Post
Share your knowledge.
Best Practices for Implementing Vesting Schedules in Sui
I'm designing a token vesting system (e.g., for team allocations or investor lock-ups) in Sui Move and need to ensure:
Security – No premature withdrawals
Flexibility – Support for cliffs, linear/gradual vesting
Gas Efficiency – Minimal storage costs
Transparency – Easy verification of vesting status
Current Challenges:
- Basic time-locks work but lack granular control
- Struggling with multi-recipient management
- Unsure how to handle early termination cases
Questions:
What’s the most secure architecture for vesting contracts?
How to implement different vesting curves (linear, graded, cliff)?
Best way to handle revocable vs. irrevocable schedules?
Common vulnerabilities to avoid?
- Sui
- Move
Answers
11. Core Vesting Architecture
Minimal Viable Implementation
module vesting::linear {
use sui::coin;
use sui::clock;
use sui::balance;
use sui::tx_context;
struct VestingSchedule has key {
id: UID,
recipient: address,
total_amount: u64,
start_time: u64, // Clock timestamp
duration_ms: u64, // Total vesting period
claimed: u64
}
/// Initialize vesting
public entry fn create(
recipient: address,
total_amount: u64,
duration_ms: u64,
clock: &Clock,
ctx: &mut TxContext
) {
let schedule = VestingSchedule {
id: object::new(ctx),
recipient,
total_amount,
start_time: clock.timestamp_ms,
duration_ms,
claimed: 0
};
transfer::transfer(schedule, recipient);
}
}
Key Components:
Clock
-based timestamps (not block numbers)- Self-custodied schedule objects
- Linear vesting by default
2. Advanced Vesting Patterns
Cliff + Linear Vesting
public fun claimable_amount(
schedule: &VestingSchedule,
clock: &Clock
): u64 {
let elapsed = clock.timestamp_ms.saturating_sub(schedule.start_time);
// Cliff period (e.g., 1 year)
if (elapsed < CLIFF_MS) return 0;
// Linear vesting after cliff
let vested = (schedule.total_amount * elapsed) / schedule.duration_ms;
vested - schedule.claimed
}
Graded Vesting (Multiple Milestones)
struct GradedVesting has key {
id: UID,
milestones: vector<Milestone>, // [{time: u64, percent: u8}]
claimed: u64
}
public fun graded_claimable(schedule: &GradedVesting, clock: &Clock): u64 {
let total_vested = 0;
let i = 0;
while (i < vector::length(&schedule.milestones)) {
let milestone = vector::borrow(&schedule.milestones, i);
if (clock.timestamp_ms >= milestone.time) {
total_vested = total_vested +
(schedule.total_amount * milestone.percent as u64) / 100;
};
i = i + 1;
};
total_vested - schedule.claimed
}
3. Security Enhancements
Revocable Vesting (Admin Controls)
struct AdminCap has key { id: UID }
public entry fn revoke(
schedule: VestingSchedule,
admin_cap: &AdminCap,
ctx: &mut TxContext
) {
assert!(address_of(signer) == admin_cap.admin, EUnauthorized);
let remaining = schedule.total_amount - schedule.claimed;
coin::transfer(remaining, admin_cap.admin, ctx);
object::delete(schedule);
}
Anti-Frontrunning
public entry fn claim(
schedule: &mut VestingSchedule,
clock: &Clock,
ctx: &mut TxContext
) {
let amount = claimable_amount(schedule, clock);
assert!(amount > 0, ENothingToClaim);
assert!(tx_context::epoch(ctx) == clock.epoch(), EStaleClock);
schedule.claimed = schedule.claimed + amount;
transfer::public_transfer(coin::mint(amount, ctx), schedule.recipient);
}
4. Gas Optimization Techniques
Batch Vesting Schedules
struct BatchVesting has key {
id: UID,
schedules: Table<address, VestingSchedule>
}
// Claim all eligible in one TXN
public entry fn batch_claim(batch: &mut BatchVesting, clock: &Clock) {
let iter = table::iter(&mut batch.schedules);
while (table::has_next(&iter)) {
let (addr, schedule) = table::next(&iter);
let amount = claimable_amount(schedule, clock);
if (amount > 0) transfer_coins(addr, amount);
}
}
Storage Rebates
// Use small types where possible
struct CompactVesting {
start_time: u64,
duration_ms: u32, // Sufficient for 49-day periods
claimed: u64
}
5. Common Vulnerabilities
❌ Time Oracle Attacks
// UNSAFE: Trusting user-provided timestamps
fun unsafe_claim(user_time: u64) { ... }
❌ Rounding Errors
// May leave "dust" unclaimed
let vested = (amount * elapsed) / duration; // Use checked_math
❌ Missing Revocation Logic
// Irrevocable vesting may violate securities laws
struct DangerousVesting { ... }
6. Testing Strategies
Mock Clock Testing
#[test]
fun test_cliff_period() {
let clock = mock_clock(0);
let schedule = create_vesting(CLIFF_MS * 2);
// Before cliff
test_clock::advance(&mut clock, CLIFF_MS - 1);
assert!(claimable(&schedule, &clock) == 0, ETestFail);
// After cliff
test_clock::advance(&mut clock, 1);
assert!(claimable(...) > 0, ETestFail);
}
Fuzz Testing
#[test]
fun test_overflow_scenarios() {
let schedule = VestingSchedule {
start_time: u64::MAX - 1000,
duration_ms: 2000
};
// Should handle wrap-around correctly
claimable_amount(&schedule, &clock);
}
Do you know the answer?
Please log in and share it.
Sui is a Layer 1 protocol blockchain designed as the first internet-scale programmable blockchain platform.
- Why does BCS require exact field order for deserialization when Move structs have named fields?53
- Multiple Source Verification Errors" in Sui Move Module Publications - Automated Error Resolution43
- Sui Transaction Failing: Objects Reserved for Another Transaction25
- How do ability constraints interact with dynamic fields in heterogeneous collections?05